Schwarzian Connections in the Krichever-Novikov Algebra

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bäcklund Transformation for the Krichever-novikov Equation

The Krichever-Novikov equation u t = u xxx − 3 2u x (u 2 xx − r(u)) + cu x , r (5) = 0 (1) appeared (up to change u = p(˜ u), ˙ p 2 = r(p)) in [1] for the first time in connection with study of finite-gap solutions of the Kadomtsev-Petviashvili equation. The distinctive feature of the equation (1) is that, accordingly to [2], no differential substitution exists connecting it with other KdV-type...

متن کامل

Towards Vertex Algebras of Krichever-Novikov Type, Part I

It is shown that a certain representation of the Heisenberg type KricheverNovikov algebra gives rise to a state field correspondence that is quite similar to the vertex algebra structure of the usual Heisenberg algebra. Finally a definition of Krichever-Novikov type vertex algebras is proposed and its relation to the ”classical” vertex algebra is discussed.

متن کامل

2 00 1 Lax pair for the Adler ( lattice Krichever - Novikov ) System

In the paper [V. Adler, IMRN 1 (1998) 1–4] a lattice version of the Krichever-Novikov equation was constructed. We present in this note its Lax pair and discuss its elliptic form.

متن کامل

ct 2 00 2 Prolongation structure of the Krichever - Novikov equation

We completely describe Wahlquist-Estabrook prolongation structures (coverings) dependent on u, ux, uxx, uxxx for the Krichever-Novikov equation ut = uxxx−3uxx/(2ux)+p(u)/ux+aux in the case when the polynomial p(u) = 4u − g2u − g3 has distinct roots. We prove that there is a universal prolongation algebra isomorphic to the direct sum of a commutative 2-dimensional algebra and a certain subalgebr...

متن کامل

A ug 2 00 2 Prolongation structure of the Krichever - Novikov equation

We completely describe Wahlquist-Estabrook prolongation structures (coverings) dependent on u, ux, uxx, uxxx for the Krichever-Novikov equation ut = uxxx−3uxx/(2ux)+p(u)/ux+aux in the case when the polynomial p(u) = 4u − g2u − g3 has distinct roots. We prove that there is a universal prolongation algebra isomorphic to the direct sum of a commutative 2-dimensional algebra and a certain subalgebr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Progress of Theoretical Physics

سال: 1991

ISSN: 0033-068X,1347-4081

DOI: 10.1143/ptp/85.4.743